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When two magnets are stuck together, where do magnetic forces operate and which formulas should one apply to compute them?
Such frequently asked questions do not find immediate answers in the literature on forces, mainly because the force field is obtained,
by the Virtual Power Principle, as a (mathematical, vector-valued) distribution, not as a plain vector field, which would be more
convenient for practical computation. We intend to show, in a few important cases of contact (between two linear materials with
different permeabilities, between magnet and magnetizable metal, between two hard magnets, etc.), how to represent this single
distribution by two vector fields, one of them borne by the bulk of the matter, the other one localized at material interfaces where
discontinuities of permeability, of magnetization, etc., do occur. A general approach will then be suggested.

Index Terms—Magnetostatics, magnetic force, contact forces, virtual power principle.

I. INTRODUCTION

CONSIDER a piece of matter with reluctivity ν plunged
into the field of a DC coil that lies some distance away.

Suppose ν insensitive to the local strain (this is to avoid for
the moment the difficulties of magnetostriction), but possibly
non-uniform inside the domain D occupied by the matter. One
will easily find, from various sources (e.g., [1], [2], [3], etc.),
that the force field inside D, or ‘body force’, is 1/2 |B|2∇ν.
This vanishes for uniform ν. Yet the piece is attracted by the
coil, so there must be a force, which cannot reside elsewhere
than at the air–matter interface S, the boundary of D (Fig. 1).
Indeed it can be shown (we do it in detail below) that this
surface force is

FS = 1/2 (|Hτ |2[µ]− |Bn|2[ν])n, (1)

where n is the outward unit normal, Hτ and Bn the tangential
part of H and normal part of B (both continuous across S),
and [µ] and [ν] the jumps of µ and ν across the surface. (Note
that [µ] > 0, as a rule, and hence [ν] < 0. Look at Fig. 1 for
the sign conventions about the jump.)

There are several ways to prove (1). The most economical
consists in taking 1/2 |B|2∇ν ‘in the sense of distributions’. I
shall explain in detail what this means, but let us first see how
the Virtual Power Principle (VPP) yields the magnetic force as
a distribution, by its very nature.

Let v denote the velocity of a virtual motion, in which a
particle sitting at point x in the reference configuration (the one
for which we want to compute forces) is displaced to the point
x+ tv at time t. We take v smooth and compactly supported
(i.e., null outside some bounded region, called the support of
v). Call Ψv , a function of virtual time only, the total magnetic
energy of the system at time t, as it evolves during this virtual
motion while keeping B equal to its reference value. Then
the virtual power at time 0 is minus the derivative of Ψv(t)
at t = 0 (a well-known result; cf. [4] for a detailed proof),
hence a linear function of v. It may happen that the virtual
power has the form

∫
F · v, where F is a vector field, which

is then, by definition, the force field. But most often the map
v → −∂t=0Ψv is just that: a map, linear with respect to v, with
the required kind of continuity with respect to v that qualifies
it as a distribution. (It’s a vector-valued distribution, since the
test functions v are themselves vector-valued.)

For instance, in the case just evoked of a piece with
reluctivity ν, the linear map one finds cannot be written as∫
F · v, where F would be 1/2 |B|2∇ν at all points where

this vector field is well defined. This would exclude S, across
which both ν and |B|2 are discontinuous, and thus would make
us miss the surface force. The notation 1/2 |B|2∇ν will be
used nonetheless for the force distribution, but it will denote a
different object than F . Which object, exactly, is what we need
to make clear, and the proof of (1) will come as a by-product.

This exercise will prepare us for a more difficult one,
the case of hard magnets with B = µ0(H + M) as B–H
law. Several possibilities exist for how M depends on the
deformation of matter. One of them was addressed in [4], where
the force field ‘in the sense of distributions’ was found to be

F = −∇M ·B − 1/2 rot(H ×B), (2)

where ∇M · B must be understood as ∂iM jBj (in a system
of orthonormal frames, using Einstein’s convention). There is
again, hidden in (2), a system of forces borne by S (the air-
magnet interface, or the magnet-magnet interface where M can
be discontinuous), a part of which is normal to S and the other
part tangential. Formulas for these forces in the style of (1) will
be derived in the full-length paper.

Finally, we shall generalize to non-linear B–H laws of the
form H = ∂BΨ(u,B), where the magnetic energy Ψ, a function
of B and of the mechanical configuration u, is convex in B.

II. DISTRIBUTIONS 101
Let us for a moment distance ourselves from electromag-

netism and deal with two scalar functions f and g. (Later,
they will become ν and |B|2.) The test functions, smooth and
compactly supported, are called ϕ when scalar-valued, v when
vector-valued.



If f is just integrable, without more regularity, the map
ϕ →

∫
f ϕ qualifies as a distribution. (All integrals of this

kind, where the integration domain is left unspecified, are over
all space.) But for a distribution such as the ‘Dirac mass’
ϕ→ ϕ(a), where a is a given spatial point, there is no function
δa such that ϕ(a) =

∫
δa ϕ. Thus, distributions encompass

functions and generalize them [5].
When f is not differentiable, its gradient ‘in the sense

of distributions’ exists nonetheless. It’s the distribution v →
−
∫
f div v, to which one extends the notation ∇f . Then one

understands
∫
∇f · v as −

∫
f div v. A notational abuse, of

course, but which makes sense: if f were differentiable all
over space, one would have −

∫
f div v =

∫
∇f · v, indeed.

Now suppose f smooth inside both D and the outer region
D′, but discontinuous across their common boundary S, with
a jump [f ]. Then, integrating by parts on D and D′,∫
∇f ·v =̂−

∫
f div v = −

∫
S

[f ]n·v+

∫
D∪D′

(∇sf)·v, (3)

where ∇sf denotes the ‘strong’ gradient of f , well-defined in
D and D′, but not on S. The capped equal sign means that
the integral to its left is defined as the one to its right.

So the vector-valued distribution denoted by ∇f in (3)
can be represented by two ordinary vector fields, the almost
everywhere defined ∇sf , living on 3D space, and [f ]n, living
on S only. We find them, as a rule, in the roles of body force
and interface force, in all situations evoked here.

Now, let’s try and interpret in the sense of distributions
the product g∇f . If both f and g are smooth all over and
compactly supported, one has

∫
g∇f · v = −

∫
f div(gv). So

we may take that as a definition of g∇f, provided
∫
f div(gv)

makes sense, which requires [g] = 0. Then,∫
(g∇f) · v =̂−

∫
S

g [f ]n · v +

∫
D∪D′

g (∇sf) · v. (4)

The constraint [g] = 0 is no surprise, since the product of two
distributions (here g and ∇f ) does not exist unconditionally.
But our goal, find an interpretation of |B|2∇ν as a distribution,
is thwarted, since [|B|2] 6= 0 as a rule. Neither can we handle
−|H|2∇µ that way, since [|H|2] 6= 0 as well. Luckily, a
suitable combination of these two expressions will work.

III. PROVING (1)

Suppose the interface S presented as the locus of points x for
which s(x) = 0, for some smooth real function s. (Having that
locally is enough.) Then, the surfaces Sα = {x : s(x) = α}, for
α in a neighborhood of zero, say −δ < α < δ, make a foliation
of a neighborhood of S, call it Dδ . Call d the function on Dδ

defined by d(x) = α when x belongs to Sα. To each such point
x, assign the unit vector (∇d)(x)/|(∇d)(x)|, hence a field n
which prolongs the field of unit normals to S considered so
far. Pick also two unit vectors, anchored at x, tangent to Sd(x),
mutually orthogonal, both smoothly depending on x. This way,
we have a smooth system of orthonormal frames, ‘adapted’ to
S in an obvious sense. Any smooth vector field X will have
(when restricted to Dδ) an orthogonal decomposition of the
form X = Xn n+Xτ , normal part plus tangential part. When
X is smooth on D and D′ separately, but discontinuous across
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Fig. 1. The jump [g] of a scalar quantity g across S is its value on the
‘upstream’ side of S minus its value on the ‘downstream’ side, as both defined
by the direction of the normal field n. By convention, n goes from D to D′

here. Also shown, one of the surfaces Sα of the foliation described in the text
(S is S0) and suggested, the orthogonal decomposition of the field H into
normal and tangential parts.

S, one may talk of the jumps [Xn]n and [Xτ ] across S of
these two parts.

Now, let’s apply this to H and B, for which [Hτ ] = 0 and
[Bn] = 0. Over Dδ , we have

|B|2∇ν = B2
n∇ν + |Bτ |2∇ν

= B2
n∇ν + |µHτ |2∇ν = B2

n∇ν + |Hτ |2µ2∇ν
= B2

n∇ν − |Hτ |2∇µ, (5)

since µ∇ν = −ν∇µ as entailed by νµ = 1. Thus, |B|2∇ν
appears as the difference of two terms, B2

n∇ν and |Hτ |2∇µ,
both of the form g∇f with [g] = 0 on which we worked
previously. Applying (4) to both terms yields (1).

IV. INTERFACE TERMS IN THE CASE OF (2)
There is room left only for a few hints about the case B =

µ0(H+M) of (2), where M is supposed to ‘rotate with matter’
without being affected by strain (cf. [4]). In the adapted frame
system, M = Mnn+Mτ , both Mn and Mτ smooth in D and
D′, but discontinuous, with jumps [Mn] and [Mτ ] across S.

The term −1/2 rot(H × B) in (2) stands for a distribution
represented by two fields. One is −1/2 rots(H ×B), with the
strong form of the curl, the bulk force. The other one, borne
by S, is expressed by one half the jump [n× (H×B)]. By the
double cross product formula, this jump is [(n·B)H−(n·H)B],
which equals n× [n ·H n×B]. Substituting ν0B −M for H
and µ0(H +M) for B, one finds, after a short calculation,

[n× (H ×B)] = µ0[Mn]Hτ −Bn[Mτ ] + µ0[MnMτ ], (6)

to be multiplied by 1/2 to get the tangential part of the interface
force FS . Last, the term −∇M · B of (2) is found, by the
technique of Section II, to contribute to FS the normal field

{[Mn]Bn + µ0[Mτ ] ·Hτ + 1/2 µ0[|Mτ |2]}n. (7)
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